Navb1 Regulates Expression of A-Type K+ Channels LIM Proteins Direct Brainstem Axon Trajectories SCN Electrophysiological Rhythms Weaken with Age Extinction Deficits May Underlie Chronic Pain
نویسندگان
چکیده
Certain repetitive arrangements of luminance gradients elicit the perception of strong illusory motion. Among them, the " Rotating Snakes Illusion " has generated a large amount of interest in the visual neurosciences, as well as in the public. Prior evidence indicates that the Rotating Snakes illusion depends critically on eye movements, yet the specific eye movement types involved and their associated neural mechanisms remain controversial. According to recent reports, slow ocular drift—a nonsaccadic type of fixational eye move-ment— drives the illusion, whereas microsaccades produced during attempted fixation fail to do so. Here, we asked human subjects to indicate the presence or absence of rotation during the observation of the illusion while we simultaneously recorded their eye movements with high precision. We found a strong quantitative link between microsaccade and blink production and illusory rotation. These results suggest that transient oculomotor events such as microsaccades, saccades, and blinks, rather than continuous drift, act to trigger the illusory motion in the Rotating Snakes illusion.
منابع مشابه
T-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملCyclic AMP signaling control of action potential firing rate and molecular circadian pacemaking in the suprachiasmatic nucleus.
Circadian pacemaking in suprachiasmatic nucleus (SCN) neurons revolves around transcriptional/posttranslational feedback loops, driven by protein products of "clock" genes. These loops are synchronized and sustained by intercellular signaling, involving vasoactive intestinal peptide (VIP) via its VPAC2 receptor, which positively regulates cAMP synthesis. In turn, SCN cells communicate circadian...
متن کاملIdentifying Candidate Genes that Underlie Cellular pH Sensitivity in Serotonin Neurons Using Transcriptomics: A Potential Role for Kir5.1 Channels
Ventilation is continuously adjusted by a neural network to maintain blood gases and pH. Acute CO2 and/or pH regulation requires neural feedback from brainstem cells that encode CO2/pH to modulate ventilation, including but not limited to brainstem serotonin (5-HT) neurons. Brainstem 5-HT neurons modulate ventilation and are stimulated by hypercapnic acidosis, the sensitivity of which increases...
متن کاملAcute Knockdown of Kv4.1 Regulates Repetitive Firing Rates and Clock Gene Expression in the Suprachiasmatic Nucleus and Daily Rhythms in Locomotor Behavior
Rapidly activating and inactivating A-type K+ currents (IA) encoded by Kv4.2 and Kv4.3 pore-forming (α) subunits of the Kv4 subfamily are key regulators of neuronal excitability. Previous studies have suggested a role for Kv4.1 α-subunits in regulating the firing properties of mouse suprachiasmatic nucleus (SCN) neurons. To test this, we utilized an RNA-interference strategy to knockdown Kv4.1,...
متن کامل